
AR-7030 Computer remote control protocol.

Information for firmware releases 1.1A,  1.2A,  1.4A  and  1.4B

1) Remote control overview.
The AR-7303 receiver allows remote control of all of its functions by means of a direct memory access
system.
A controlling computer can read and modify the internal memory maps of the receiver to set required param-
eters and then call for the receiver’s control program to process the new settings.
Commands to the receiver are byte structured in binary format, so it is not possible to control from a terminal.
All multi-byte numbers within the receiver are binary, stored msb first.

2) Receiver frequency configuration.
Receive frequency is set by two oscillators - local and carrier. In AM and FM modes the carrier oscillator is
not used, and the final IF frequency is 455kHz. In Sync mode the carrier oscillator is offset by +20.29kHz
before mixing with the IF.
The IF frequencies have a fixed inter-conversion frequency of 44.545MHz and, because of the high-side local
oscillator, both IF’s are inverted.

The receiver controller processes the following variables to establish the tuned frequency :-
[local offset] Frequency shift applied to local oscillator.
[carrier offset] 455.00kHz for LSB, USB, Data and CW modes / 434.71kHz for Sync mode.
[filter offset] IF Filter frequency at the (vestigial) carrier position as an offset from 455kHz.
[PBS] User set filter shift.
[BFO] User set offset between carrier position and frequency display.
[TUNE] Receiver tuned frequency as shown on display.

The relationship between these variables and the tuning is as follows :-
[carrier offset] + [filter offset] + [PBS] + [BFO] ——> Carrier oscillator
45.000MHz + [filter offset] + [PBS] ——> [local offset]
[TUNE] + [local offset] ——> Local oscillator

3) Serial data protocol.
All data transfers are at 1200 baud, No parity, 8 bits, 1 stop bit  (1200 N 8 1). There is no hardware or soft-
ware flow control other than that inherent in the command structure. The receiver can accept data at any time
at full rate provided the IR remote controller is not used or is disabled. A maximum of one byte can be
transmitted for each byte received, so data flow into a controlling computer is appropriately limited.
Each byte sent to the receiver is a complete command - it is best thought of as two hexadecimal digits - the
first digit is the operation code, the second digit is 4-bits of data relating to the operation. Because the
receiver operates with 8-bit bytes, intermediate 4-bit values are stored in registers in the receiver for recombi-
nation and processing. For example to write into the receiver’s memory, the following steps would be followed
:-

a) Send address high order 4-bits into H-register
b) Send address low order 4-bits and set Address register
c) Send first data byte high order 4-bits into H-register
d) Send first data byte low order 4-bits and execute Write Data Operation
e) Send second data byte high order 4-bits into H-register
f) Send second data byte low order 4-bits and execute Write Data Operation
g) Repeat (e) and (f) for each subsequent byte to be written.

4) Memory organisation.
Different memory areas in the receiver are referenced by selecting Pages - up to 16 pages are supported.
The memory is broadly divided into 3 sections :-

a) Working memory - where all current operating variables are stored and registers and stack are
located. This memory is volatile and data is lost when power to the receiver is removed.

b) Battery sustained memory - where duplicate parameters are stored for retention when power is
removed. This memory area is also used for storage of filter parameters, setup memories and
squelch and BFO settings for the frequency memories and contains the real time clock regis-
ters.

c) EEPROM - where frequency, mode, filter and PBS information for the frequency memories is
stored. Additionally S-meter and IF calibration values are stored here. This memory can be
read or written to download and upload the receiver’s frequency memories, but repetitive
writing should be avoided because the memory devices will only support a finite number of
write cycles.



5) Variations between A and B types and firmware revisions.
Type A firmware supports only basic receiver functions, type B extends operations and includes support for
the Notch / Noise Blanker option. The whole of the type A memory map is retained in type B, but more
memory and operations are added for the extended functions of type B.
In the following information, circled note numbers are included to indicate where items are specific to one
type or
revision of the firmware:-

� Applicable to type B firmware only.
� Applicable to revision 1.4 only, types A and B
� Function is changed or added to in type B

6) Operation codes.
The high order 4-bits of each byte sent to the receiver is the operation code, the low order 4-bits is data
(shown here as x) :-

Code Ident Operation
0 x NOP No Operation
3 x SRH Set H-register x  —>  H-register (4-bits)
5 x PGE Set page x  —>  Page register (4-bits)
4 x ADR Set address 0Hx  —>  Address register (12-bits)

0  —>  H-register
1 x ADH Set address high x  —>  Address register (high 4-bits)
6 x WRD Write data Hx  —>  [Page, Address]

Address register + 1  —>  Address register
0  —>  H-register,  0  —>  Mask register

9 x MSK � Set mask Hx  —>  Mask register
0  —>  H-register

2 x EXE Execute routine x
A x BUT � Operate button x
7 x RDD Read data [Page, Address]  —>  Serial output

Address register + x  —>  Address register
8 x LOC Set lock level x

Note that the H-register is zeroed after use, and that the high order 4-bits of the Address register must be set
(if non-zero) after the low order 8-bits. The Address register is automatically incremented by one after a write
data operation and by x after a read data operation.
When writing to any of the EEPROM memory pages a time of 10ms per byte has to be allowed. For this
reason it is recommended that instructions SRH and WRD are always used together (even if the SRH is not
needed) since this will ensure that the EEPROM has sufficient time to complete its write cycle.
Additionally to allow time for local receiver memory updates and SNC detector sampling in addition to the
EEPROM write cycle, it is recommended to lock the receiver to level 2 or 3, or add a NOP instruction after
each write. This is not required for firmware revision 1.4 but locking is still recommended.
The mask operation helps with locations in memory that are shared by two parameters and aids setting and
clearing bits. The mask operates only in Page 0. If bits in the mask are set, then a following write operation
will leave the corresponding bits unchanged. The mask register is cleared after a write so that subsequent
writes are processed normally. Because it defaults to zero at reset, the mask is inoperative unless specifically
set.
The operate button instruction uses the same button codes as are returned from routine 15 (see section 8),
with an additional code of zero which operates the power button, but will not switch the receiver off. Also code
0 will switch the receiver on (from standby state).

7) Memory pages.
Page 0 Working memory (RAM) 256 bytes.
Page 1 Battery sustained memory (RAM) 256 bytes.
Page 2 Non-volatile memory (EEPROM) 512 bytes.
Page 3 � Non-volatile memory (EEPROM) 4096 bytes.
Page 4 � Non-volatile memory (EEPROM) 4096 bytes.
Pages 5 - 14 Not assigned.
Page 15 Receiver Ident (ROM) 8 bytes.

The ident is divided into model number (5 bytes), software revision (2 bytes) and
type letter (1 byte).
eg  7030_14A  —>  Model AR-7030,  revision 1.4,  type letter A.

8) Lock levels.
Level 0 Normal operation.
Level 1 IR remote control disabled.

Front panel buttons ignored.



Front panel spin-wheels logged but not actioned.
Display update (frequency & S-meter) continues.

Level 2 As level 1, but display update suspended. In revisions before 1.4
squelch operation is inhibited, which results in no audio output
after a mode change. In revision 1.4 squelch operation continues
and mode changing is as expected.

Level 3 Remote operation exclusively.

Lock level 1 is recommended during any multi-byte reads or writes of the receiver’s memory to prevent data
contention between internal and remote memory access. See also EEPROM notes in section (6)

 8) Routines.
Routine 0 Reset Setup receiver as at switch-on.
Routine 1 Set frequency Program local oscillator from frequ area and setup RF filters and

oscillator range.
Routine 2 Set mode Setup from mode byte in memory and display mode, select preferred filter

and PBS, BFO values etc.
Routine 3 Set passband Setup all IF parameters from filter, pbsval and bfoval bytes.
Routine 4 Set all Set all receiver parameters from current memory values
Routine 5 � Set audio Setup audio controller from memory register values.
Routine 6 � Set RF-IF Setup RF Gain, IF Gain and AGC speed. Also sets Notch Filter and Noise

Blanker if these options are fitted.
Routine 7 Not assigned
Routine 8 Not assigned
Routine 9 Direct Rx control Program control register from rxcon area.
Routine 10 Direct DDS control Program local oscillator and carrier oscillator DDS systems

from wbuff area. The 32-bits at wbuff control the carrier
frequency, value is 385674.4682 / kHz. The 32 bits at
wbuff+4 control the local osc frequency, value is
753270.4456 / MHz.

Routine 11 Display menus Display menus from menu1 and menu2 bytes.
Routine 12 Display frequency Display frequency from frequ area.
Routine 13 Display buffer Display ASCII data in wbuff area. First byte is display address,

starting at 128 for the top line and 192 for the bottom line.
An address value of 1 clears the display. Data string (max
length 24 characters) ends with a zero byte.

Routine 14 Read signal strength Transmits byte representing received signal strength (read
from AGC voltage). Output is 8-bit binary in range 0 to 255.

Routine 15 Read buttons Transmits byte indicating state of front panel buttons. Output is 8-
bit binary with an offset of +48 (ie ASCII numbers). Buttons
held continuously will only be registered once.

Button codes :-
0 = None pressed 5 = RF-IF button
1 = Mode up button 6 = Memory button
2 = Mode down button 7 = * button
3 = Fast button 8 = Menu button
4 = Filter button 9 = Power button

Note that the work buffer wbuff area in memory is used continuously by the receiver unless lock levels 2 or 3
are invoked. Lock levels of 1 or more should be used when reading any front panel controls to prevent erratic
results.

10) Battery sustained RAM (Memory page 1)
Address Ident Length Description

0 00 13 bytes Real time clock / timer registers :-
0 00 rt_con 1 byte Clock control register
2 02 rt_sec 1 byte Clock seconds (2 BCD digits)
3 03 rt_min 1 byte Clock minutes (2 BCD digits)
4 04 rt_hrs 1 byte Clock hours (2 BCD digits - 24 hr format)
5 05 rt_dat 1 byte Clock year (2 bits) and date (2 BCD digits)
6 06 rt_mth 1 byte Clock month (2 BCD digits - low 5 bits only)
8 08 tm_con 1 byte Timer control register
10 0A tm_sec 1 byte Timer seconds (2 BCD digits)
11 0B tm_min 1 byte Timer minutes (2 BCD digits)
12 0C tm_hrs 1 byte Timer hours (2 BCD digits - 24 hr format)

13 0D 15 bytes Power-down save area :-



13 0D ph_cal 1 byte Sync detector phase cal value
14 0E pd_slp 1 byte Timer run / sleep time in minutes
15 0F pd_dly 1 byte Scan delay value x 0.125 seconds
16 10 pd_sst 1 byte Scan start channel
17 11 pd_ssp 1 byte Scan stop channel
18 12 pd_stp 2 bytes Channel step size
20 14 pd_sql 1 byte Squelch
21 15 pd_ifg 1 byte IF gain
22 16 pd_flg 1 byte Flags (from pdflgs)
23 17 pd_frq 3 bytes Frequency
26 1A pd_mod � 1 byte Mode (bits 0-3) and NB threshold (bits 4-7)
27 1B pd_vol � 1 byte Volume (bits 0-5) and rx memory hundreds (bits 6&7)
28 1C 26 bytes Receiver setup save area :-
28 1C md_flt 1 byte AM mode : Filter (bits 0-3) and AGC speed (bits 4-7)
29 1D md_pbs 1 byte AM mode : PBS value
30 1E md_bfo 1 byte AM mode : BFO value
31 1F 3 bytes Ditto for Sync mode
34 22 3 bytes Ditto for NFM mode - except Squelch instead of BFO
37 25 3 bytes Ditto for Data mode
40 28 3 bytes Ditto for CW mode
43 2B 3 bytes Ditto for LSB mode
46 2E 3 bytes Ditto for USB mode
49 31 st_aud � 1 byte Audio bass setting (bits 0-4)

bit 5  Notch auto track enable
bit 6  Ident search enable
bit 7  Ident preview enable

50 32 1 byte Audio treble setting (bits 0-3) and RF Gain (bits 4-7)
51 33 1 byte Aux output level - left channel
52 34 1 byte Aux output level - right channel
53 35 st_flg 1 byte Flags (from stflgs)

54 36 26 bytes Setup memory A (configured as above)
80 50 26 bytes Setup memory B (configured as above)
106 6A 26 bytes Setup memory C (configured as above)
132 84 24 bytes Filter data area :-
132 84 fl_sel 1 byte Filter 1 : selection bits and IF bandwidth
133 85 fl_bw 1 byte Filter 1 : bandwidth (2 BCD digits, x.x kHz)
134 86 fl_uso 1 byte Filter 1 : USB offset value x 33.19Hz
135 87 fl_lso 1 byte Filter 1 : LSB offset value x 33.19Hz
136 88 4 bytes Ditto for filter 2
140 8C 4 bytes Ditto for filter 3
144 90 4 bytes Ditto for filter 4
148 94 4 bytes Ditto for filter 5
152 98 4 bytes Ditto for filter 6
156 9C mem_sq 100 bytes Squelch / BFO values for frequency memories 0 to 99

(BFO for Data and CW modes, Squelch for others)
11) EEPROM (Memory page 2)

Address Ident Length Description

0 000 4 bytes Frequency memory data :-
0 000 mem_fr 3 bytes Memory 00 : 24-bit frequency
3 003 mem_md 1 byte bits 0 - 3 mode

bits 4 - 6 filter
bit 7 scan lockout

4 004 396 bytes Ditto for memories 01 to 99
400 190 mem_pb 100 bytes PBS values for frequency memories 0 to 99

500 1F4 sm_cal 8 bytes S-meter calibration values :-
500 1F4 1 byte RSS offset for S1 level
501 1F5 1 byte RSS steps up to S3 level
502 1F6 1 byte RSS steps up to S5 level
503 1F7 1 byte RSS steps up to S7 level
504 1F8 1 byte RSS steps up to S9 level
505 1F9 1 byte RSS steps up to S9+10 level
506 1FA 1 byte RSS steps up to S9+30 level
507 1FB 1 byte RSS steps up to S9+50 level
508 1FC if_cal 2 bytes RSS offsets for -20dB and -8dB filter alignment



510 1FE if_def 1 byte Default filter numbers for narrow and wide (2 BCD digits)
511 1FF option � 1 byte Option information :-

bit 0 Noise blanker
bit 1 Notch filter
bit 2 10 dB step attenuator (DX version)

12) EEPROM (Memory page 3) �
Address Ident Length Description

0 000 4 bytes Frequency memory data :-
0 000 mex_fr 3 bytes Memory 100 : 24-bit frequency
3 003 mex_md 1 byte bits 0 - 3 mode

bits 4 - 6 filter
bit 7 scan lockout

4 004 1196 bytes Ditto for memories 101 to 399

1200 4B0 8 bytes Timer memory data :-
1200 4B0 mtm_mn 1 byte Timer memory 0 : minutes (2 BCD digits)
1201 4B1 mtm_hr 1 byte hours (2 BCD digits)
1202 4B2 mtm_dt 1 byte date (2 BCD digits)
1203 4B3 mtm_mt 1 byte month (2 BCD digits)
1204 4B4 mtm_ch 2 bytes rx channel (hundreds and 0-99)
1206 4B6 mtm_rn 1 byte run time
1207 4B7 mtm_ac 1 byte active (0 = not active)
1208 4B8 72 bytes Ditto for timer memories 1 to 9

1280 500 16 bytes Frequency memory data :-
1280 500 mex_sq 1 byte Memory 0 : Squelch / BFO (not used for mems 0 to 99)

(BFO for Data and CW modes)
1281 501 mex_pb 1 byte PBS value (not used for mems 0 to 99)
1282 502 mex_id 14 bytes Text Ident
1296 510 2800 bytes Ditto for memories 1 to 175

13) EEPROM (Memory page 4) �
Address Ident Length Description

0 000 16 bytes Frequency memory data :-
0 000 1 byte Memory 176 : Squelch / BFO  (BFO for Data and CW
modes)
1 001 1 byte PBS value
2 002 14 bytes Text Ident
16 010 3568 bytes Ditto for memories 177 to 399

3584 E00 mex_hx 400 bytes Frequency fast find index (1 byte for each memory 0 to 399)
Index value is bits 9 to 16 of 24-bit frequency stored in
each memory. Empty memories (frequency zero) should
have a random index byte.

3984 F90 112 bytes spare

14) Working memory (Memory page 0)
Areas not specifically addressed are used as workspace by the internal processor. - Keep out (by
order).
Address Ident Length Description

16 10 snphs 1 byte Sync detector phase offset cal value
17 11 slptim 1 byte Sleep time (minutes)
18 12 scnst 1 byte Scan start channel
19 13 scnsp 1 byte Scan stop channel
20 14 scndly 1 byte Scan delay time value x 0.125 seconds
21 15 chnstp 2 bytes 16-bit channel step size, value is 376.6352 / kHz
23 17 sqlsav 1 byte Squelch save value (non-fm mode)
24 18 ifgain 1 byte IF gain value (zero is max gain)
26 1A frequ 3 bytes 24-bit tuned frequency, value is 376635.2228 / MHz.
29 1D mode 1 byte Current mode :- 1 = AM 4 = Data

2 = Sync 5 = CW
3 = NFM 6 = LSB
7 = USB



30 1E 10 bytes Audio control registers :-
30 1E af_vol 1 byte Main channel volume (6-bits, values 15 to 63)
31 1F af_vll 1 byte Left channel balance (5-bits, half of volume value
above)
32 20 af_vlr 1 byte Right channel balance (as above)
33 21 af_bas � 1 byte Main channel bass (bits 0-4, values 6 to 25, 15 is flat)

bit 5 nchtrk Notch auto track enable
bit 6 idauto Ident auto search enable
bit 7 idprev Ident auto preview enable

34 22 af_trb � 1 byte Main channel treble (bits 0-3, values 2 to 10, 6 is flat)
bit 4 nb_opt Noise blanker menus enabled
bit 5 nt_opt Notch Filter menus enabled
bit 6 step10 10dB RF attenuator fitted

35 23 af_axl 1 byte Left aux channel level (bits 0-5, values 27 to 63)
36 24 af_axr � 1 byte Right aux channel level (bits 0-5, values 27 to 63)

bit 7 nchsr Notch search running
37 25 af_axs � 1 byte Aux channel source (bits 0-3)

bit 4 nchen Notch filter active
bit 5 nchsig Notch filter signal detected
bit 6 axmut Aux output mute
bit 7 nchato Notch auto tune active

38 26 af_opt � 1 byte Option output source (bits 0-3)
bit 4 idover Ident on LCD over frequency
bit 5 idsrdn Ident search downwards
bit 7 idsrch Ident search in progress

39 27 af_src 1 byte Main channel source
bit 6 afmut Main output mute

40 28 rxcon 3 bytes Receiver control register mapping :-
byte 1 bit 0 rx_fs3 Filter select : FS3
byte 1 bit 1 rx_fs2 Filter select : FS2
byte 1 bit 2 rx_fs1 Filter select : FS1
byte 1 bit 3 rx_fs4 Filter select : FS4
byte 1 bit 4 rx_pre Preamplifier enable
byte 1 bit 5 rx_atr Atten : 0 = 20dB / 1 = 40dB
byte 1 bit 6 rx_rff Input filter : 0 = HF / 1 = LF
byte 1 bit 7 rx_atn Attenuator enable
byte 2 bit 0 rx_as1 AGC speed : 00 = Slow
byte 2 bit 1 rx_as2 10 = Med

11 = Fast
byte 2 bit 2 rx_agi AGC inhibit
byte 2 bit 3 rx_en LO and HET enable
byte 2 bit 4 rx_aux Aux relay enable
byte 2 bit 5 rx_fs5 Filter select : FS5
byte 2 bit 6 rx_fs6 Filter select : FS6
byte 2 bit 7 rx_ibw IF b/w : 0 = 4kHz / 1 = 10kHz
byte 3 bit 0 rx_chg Fast charge enable
byte 3 bit 1 rx_pwr PSU enable
byte 3 bit 2 rx_svi Sync VCO inhibit

byte 3 bit 3 rx_agm AGC mode : 0 = peak / 1 =
mean
byte 3 bit 4 rx_lr1 LO range : 00 =  17 - 30
MHz
byte 3 bit 5 rx_lr2 10 =  10 - 17
MHz

01 =   4 - 10 MHz
11 =   0 -  4 MHz

byte 3 bit 6 rx_sbw Sync b/w : 0 = Wide / 1 =
Narrow
byte 3 bit 7 rx_car Car sel  : 0 = AM / 1 = DDS

43 2B bits 3 bytes General flags :-
byte 1 bit 6 lock1 Level 1 lockout
byte 1 bit 7 lock2 Level 2 lockout
byte 2 bit 0 upfred Update frequency display
byte 2 bit 1 upmend Update menus



byte 2 bit 2 tune4x Tune 4 times faster (AM &
NFM)
byte 2 bit 3 quickly Quick tuning (fast AGC,
Sync)
byte 2 bit 4 fast Fast tuning mode
byte 2 bit 5 sncpt1 Auto sync - frequency lock
byte 2 bit 6 sncpt2 Auto sync - phase lock
byte 2 bit 7 sncal Sync detector calibrating
byte 3 bit 0 sqlch Squelch active (ie low signal)
byte 3 bit 1 mutsql Mute on squelch (current
setting)
byte 3 bit 2 bscnmd Scan mode for VFO B
byte 3 bit 3 dualw Dual watch active
byte 3 bit 4 scan Scan active
byte 3 bit 5 memlk Current memory scan lockout
byte 3 bit 6 pbsclr Enable PBS CLR from IR
remote

� byte 3 bit 7 memodn MEM button scans down-
wards

46 2E pdflgs 1 byte Flags saved at power-down :-
bit 0 power Power on
bit 1 flock Tuning locked
bit 2 batop Battery operation (for fast
chg)

� bit 3 nben Noise blanker active
� bit 4 nblong Noise blanker long pulse

47 2F stflgs 1 byte Flags saved in setup memories :-
bit 0 mutsav Mute on squelch (non-fm
mode)
bit 1 mutaux Mute aux output on squelch
bit 2 axren Aux relay on timer
bit 3 axrsql Aux relay on squelch
bit 4 snauto Auto sync mode
bit 5 snarr Sync detector narrow band-
width
bit 6 scanmd Scan runs irrespective of
squelch
bit 7 autorf RF gain auto controlled

48 30 rfgain 1 byte Current RF gain setting (0 to 5) (0=max gain)
49 31 rfagc 1 byte Current RF AGC setting (added to above)
50 32 agcspd 1 byte Current AGC speed : 0 = Fast 2 = Slow

1 = Medium 3 = Off
51 33 sqlval 1 byte Squelch value (current setting)
52 34 filter 1 byte Current filter number (1 to 6)
53 35 pbsval 1 byte PBS offset (x33.19Hz)
54 36 bfoval 1 byte BFO offset (x33.19Hz)
55 37 fltofs 1 byte Filter centre frequency offset (x33.19Hz)
56 38 fltbw 1 byte Filter bandwidth (2 BCD digits : x.x kHz)
57 39 ircode: 2 bytes Current / last IR command code
59 3B spnpos 1 byte Misc spin-wheel movement }  0 = no movement
60 3C volpos 1 byte Volume control movement }  +ve = clockwise
61 3D tunpos 1 byte Tuning control movement }  -ve  = anti-clockwise
62 3E lstbut 1 byte Last button pressed
63 3F smval 2 bytes Last S-meter reading (bars + segments)
65 41 mestmr 1 byte Message time-out timer
66 42 rfgtmr 1 byte RF gain delay timer
67 43 updtmr 1 byte Sustained RAM update timer
68 44 agctmr 1 byte AGC speed restore delay timer
69 45 snctmr 1 byte Auto sync refresh timer
70 46 scntmr 1 byte Scan delay timer
71 47 irdly 1 byte IR remote auto repeat delay counter
72 48 runtmr 1 byte Sleep mode timer
73 49 snfrq 1 byte Sync detector frequency offset cal value
74 4A frange 1 byte Input / LO range



75 4B menu1 � 1 byte Current left menu (type A and B menu numbers are differ-
ent)
76 4C menu2 � 1 byte Current right menu (type A and B menu numbers are
different)
77 4D memno 1 byte Current memory number
78 4E setno 1 byte Setup / config selection - load / save
85 55 mempg � 1 byte Memory page (hundreds - value 0 to 3)
86 56 nbthr � 1 byte Noise blanker threshold (values 0 to 15)
87 57 hshfr � 1 byte Current tuned frequ index value (during ident search)
88 58 nchtmr � 1 byte Notch filter auto tune / search timer
90 59 wbuff 26 bytes Work buffer
115 73 keymd 1 byte IR remote +/- keys function
116 74 keybuf 20 bytes IR remote key input buffer

136 88 frofs: 4 bytes 32-bit local osc offset
140 8C carofs 4 bytes 32-bit carrier osc offset
144 90 smofs 1 byte S-meter starting offset
145 91 smscl 7 bytes S-meter segment values
152 98 ifcal 2 bytes RSS offsets for -20dB and -5dB filter alignment
154 9A ifdef 1 byte Default filter numbers for narrow and wide (2 digits)

155 9B vfo_b 22 bytes VFO B storage area :-
155 9B 1 byte B : Scan delay time
156 9C 2 bytes B : Channel step size
158 9E 1 byte B : Squelch save value (non-fm mode)
159 9F 1 byte B : IF gain value
160 A0 1 byte not used
161 A1 3 bytes B : Tuned frequency
164 A4 1 byte B : Mode
165 A5 1 byte B : Volume
166 A6 1 byte B : Left channel balance
167 A7 1 byte B : Right channel balance
168 A8 1 byte B : Bass response
169 A9 1 byte B : Treble response
170 AA 1 byte B : RF gain
171 AB 1 byte B : RF AGC
172 AC 1 byte B : AGC speed
173 AD 1 byte B : Squelch value
174 AE 1 byte B : Filter number
175 AF 1 byte B : PBS offset
176 B0 1 byte B : BFO offset

218 DA savmnu � 1 byte Saved menu 1 number during ident display
219 DB srchm � 2 bytes Ident search memory (page and number)
222 DD idtmr � 1 byte Auto ident search start timer
223 DE nchfr � 2 bytes 16-bit notch filter frequency, value is 6553.6 / kHz

15) Sample routines (in MS QBASIC)

REM    Sample subroutines for communication with the AR-7030 A-type
REM    These subroutines use the following variables :-
REM         rx.freq#       frequency in kHz (double precision)
REM         rx.mode        mode number (1 to 7)
REM         rx.filt        filter number (1 to 6)
REM         rx.mem         memory number (0 to 99)
REM         rx.pbs         passband shift value (-4.2 to +4.2 in kHz)
REM         rx.sql         squelch value (0 to 255)
REM         ident$         model number, revision and type

REM Subroutine to open comms link to receiver
open.link:
       open “com1:1200,n,8,1,cd0,cs0,ds0,rs” for random as #1 len = 1
       field #1, 1 as input.byte$
       return



REM Subroutine to flush QBASIC serial input buffer
flush.buffer:
       print #1,”//”;
       do
          time.mark# = timer
          do while timer - time.mark# < 0.2
          loop
          if eof(1) then exit do
          get #1
       loop
       return

REM Subroutines to lock and unlock receiver controls
lock.rx:
       print #1,chr$(&H81);                      ‘ Set lockout level 1
       return
unlock.rx:
       print #1,chr$(&H80);                      ‘ Lockout level 0 (not locked)
       return

REM Subroutine to read byte from comms link
read.byte:
       read.value = -1                           ‘ Value assigned for read error
       time.mark# = timer
       print #1,chr$(&H71);                      ‘ Read byte command
       do while timer - time.mark# < 0.3
          if eof(1) = 0 then
                      get #1
                      read.value = asc(input.byte$)
                      exit do
                      end if
       loop
       return

REM Subroutine to set receiver frequency and mode
tune.rx:
       gosub lock.rx
       print #1,chr$(&H50);                      ‘ Select working mem (page 0)
       print #1,chr$(&H31);chr$(&H4A);           ‘ Frequency address = 01AH
       gosub send.freq                           ‘ Write frequency
       print #1,chr$(&H60+rx.mode);              ‘ Write mode
       print #1,chr$(&H24);                      ‘ Tune receiver
       gosub unlock.rx
       return

REM Subroutine to store data into receiver’s frequency memory
set.memory:
       mem.loc = rx.mem+156                      ‘ Squelch memory origin
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       print #1,chr$(&H51);                      ‘ Select squelch memory (page 1)
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       print #1,chr$(&H30+int(rx.sql/16))
       print #1,chr$(&H60+rx.sql mod 16)         ‘ Write squelch value

       mem.loc = rx.mem*4                        ‘ Frequency memory origin
       mem.t = int(mem.loc/256)
       mem.loc = mem.loc mod 256
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       print #1,chr$(&H52);                      ‘ Select frequency memory (page
2)
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       print #1,chr$(&H10+mem.t);
       gosub send.freq                           ‘ Write frequency



       print #1,chr$(&H30+rx.filt);
       print #1,chr$(&H60+rx.mode);              ‘ Write filter and mode

       mem.loc = rx.mem+400-256                  ‘ PBS memory origin
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       pbs.val = 255 and int(rx.pbs/0.033189+0.5)
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       print #1,chr$(&H11);
       print #1,chr$(&H30+int(pbs.val/16))
       print #1,chr$(&H60+pbs.val mod 16)        ‘ Write passband value
       return

REM Subroutine to read data from receiver’s frequency memory
read.memory:
       mem.loc = rx.mem+156                      ‘ Squelch memory origin
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       print #1,chr$(&H51);                      ‘ Select squelch memory (page 1)
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       gosub read.byte                           ‘ Read squelch value
       rx.sql = read.value

       mem.loc = rx.mem*4                        ‘ Frequency memory origin
       mem.t = int(mem.loc/256)
       mem.loc = mem.loc mod 256
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       print #1,chr$(&H52);                      ‘ Select frequency memory (page
2)
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       print #1,chr$(&H10+mem.t);
       gosub read.freq                           ‘ Read frequency
       gosub read.byte                           ‘ Read filter and mode
       if read.value < 0 then return
       rx.filt = int(read.value/16)
       rx.mode = read.value mod 16
       mem.loc = rx.mem+400-256                  ‘ PBS memory origin
       mem.h = int(mem.loc/16)
       mem.l = mem.loc mod 16
       print #1,chr$(&H30+mem.h);
       print #1,chr$(&H40+mem.l);                ‘ Set memory address
       print #1,chr$(&H11);
       gosub read.byte                           ‘ Read passband value
       if read.value < 0 then return
       if read.value > 127 then read.value = 256-read.value
       rx.pbs = read.value*0.033189
       return

REM Subroutine to read receiver ident string
read.ident:
       print #1,chr$(&H5F);                      ‘ Select ident memory (page 15)
       print #1,chr$(&H40);                      ‘ Set address 0
       ident$=””
       for read.loop = 1 to 8
          gosub read.byte                        ‘ Read 8-byte ident
          if read.value < 0 then exit for
          ident$ = ident$+chr$(read.value)
       next read.loop
       return

REM Subroutine to send frequency  (Called only from other routines)
send.freq:
       fr.val# = int(rx.freq#*376.635223+0.5)    ‘ Convert kHz to steps



                                              ‘ Exact multiplicand is (2^24)/
44545
       print #1,chr$(&H30+int(fr.val#/1048576));
       fr.val# = fr.val# mod 1048576             ‘ Write frequency as 6 hex dig-
its
       print #1,chr$(&H60+int(fr.val#/65536));
       fr.val# = fr.val# mod 65536
       print #1,chr$(&H30+int(fr.val#/4096));
       fr.val# = fr.val# mod 4096
       print #1,chr$(&H60+int(fr.val#/256));
       fr.val# = fr.val# mod 256
       print #1,chr$(&H30+int(fr.val#/16));
       print #1,chr$(&H60+(fr.val# mod 16));
       return

REM Subroutine to read frequency  (Called only from other routines)
read.freq:
       fr.val# = 0
       for read.loop = 1 to 3
          gosub read.byte                        ‘ Read frequency as 3 bytes
          if read.value < 0 then exit for
          fr.val# = fr.val#*256+read.value
       next read.loop
       rx.freq# = fr.val#/376.635223             ‘ Convert steps to kHz
       return


